CO2 Capture Costs Putting the Pieces Together

John Kline Kline Consulting, LLC

johnpkline1@gmail.com

(484) 602-3474

Carbon Capture = Costs of a New Plant

Most of what you hear is optimistic !

Carbon Capture Cost Boundaries

Carbon Capture System (\$1bn)– 2 Main Cost Factors

If the Costs are too high, don't study in more detail, change the scope

Plant Modifications

- Incoming power
 - Incoming power lines
 - Substation(s)
- Fuel Availability (Solid & Gas)
- Water Supply
 - Pre-cleaning
- Construction Site
 - Clearing
 - Leveling
 - Fencing, etc.

• Plant changes, roads, access gates, fencing, security, etc.

- [1] ECRA 2022 technology papers
- [2] US DOE NETL 2023 Cement Plant Retrofit

- + 100 to + 400 kWh/t-cem [1]
- + 0 to +4.0 GJ/t-clk [1] + 1 mn gpd / +4 mn lpd [2]
- 10+ acres / 2.5+ Hectares [2]

Gas Cleaning ahead of Carbon Capture

DOE CCS Project Cost Breakdown

DOE Results

Selected Cases

No Air Ingress = Preheater Exit Gases

Air Ingress 400,000 ACFM = VRM with low leakage

Air Ingress 700,000 ACFM = VRM with high leakage and / or Cooler exhaust

DOE Presentation @ IEEE 2023 DOE NETL Report

Basis: 1.371 mn tpy clinker – coal fired pyro line with natural gas fired boiler for stripping

Includes CO2 drying and compression

Excludes Post-Cleaning, Transportation & Storage

"Remains Optimistic"

DOE NETL Report Financial Assumptions

Financial Parameter	Value
Fixed Charge Rate	7.91%
TASC/TOC Ratio	1.118
Capital Charge Factor	8.84%
Debt/Equity Ratio	42/58
Operating Life/Depreciation Period	30 years
Interest on Debt	8.82%
Levered Return on Equity	4.90%
Weighted Average Cost of Capital	6.56%
Capital Expenditure Period	3 years
Capital Distribution	1 st year - 10% 2 nd year - 60% 3 rd year - 30%

Exhibit 2-3. Financial assumptions for retrofit capture at cement plant

DOE NETL Report

Project Cost Breakdown by Cost Type

Cost Type - <i>CM95-B-S100N500 at 250°F with air</i> <i>in-leakage up to 400,000 ACFM</i>	Costs	% of Total
Equipment Costs	\$207,247,000	23.3%
Material Costs	\$58,364,000	6.5%
Direct Labor Costs	<u>\$145,026,000</u>	<u>16.3%</u>
Bare Erected Costs (BEC)	\$431,169,000	48.4%
Owner's Costs	\$71,861,000	8.1%
Process Contingency	\$39,530,000	4.4%
Project Contingency	\$104,406,000	<u>11.7%</u>
Total Project Costs	\$626,434,000	70.3%
Retrofit Costs	\$31,322,000	<u>3.5%</u>
Total Retrofitted Project (TPC)	\$657,756,000	73.8%
Start-Up & Commissioning	<u>\$139,472,000</u>	<u>15.6%</u>
Total Overnight Costs (TOC)	\$797,228,000	89.4%
Escalation & Interest	<u>\$94,091,000</u>	<u>10.6%</u>
Total As Spent Costs (TAS)	\$891,319,000	100.0%

DOE NETL Report

Project Cost Breakdown by Area (DOE)

Area - <i>CM95-B-S100N500 at 250°F with air</i> <i>in-leakage up to 400,000 ACFM</i>	Costs	% of Total
Feed water & Misc. BOP	\$41,712,000	6.3%
Flue Gas Clean-Up & CC	\$496,991,000	75.6%
Ductwork & Stack	\$32,520,000	4.9%
Cooling Water System	\$15,590,000	2.4%
Accessory Electric Plant	\$30,162,000	4.6%
Instrumentation & Control	\$7,149,000	1.1%
Improvements to Site	\$2,310,000	0.4%
Total	<u>\$626,434,000</u>	<u>95.2%</u>
Retrofit	<u>\$31,322,000</u>	<u>4.8%</u>
Total with Retrofit	\$657,756,000	100.0%

Operating Costs (DOE)

Cost Item - CM95-B-S100N500 at 250°F 400,000 ACFM	Comments	Annual (\$ mn)	\$ / t - CO2 Avoided (1,104,478 t-CO2)
Operating Labor	11.5 people (maint. separate)	\$6.60	\$5.97
Property Taxes & Insurance		<u>\$13.16</u>	<u>\$14.41</u>
Fixed Costs		\$19.75	\$17.88
Natural Gas (\$4.42 / mn BTU)	3.86 mn BTU / t-clk	\$23.43	\$21.21
Power (\$60 / MWh)	135 kWh / t – clk	\$11.67	\$10.56
Maintenance Materials	0.96 % TPC	\$6.31	\$5.72
Water Consumption (\$0.00224/gal)	1,053,000 gallons / day	\$0.74	\$0.67
Water Treatment Chemicals (\$647.04/ton)	3.1 tons / day	\$0.64	\$0.58
Amine Solution	Proprietary	\$4.01	\$3.63
Tri-Ethylene Glycol (\$8/gal)	286 gallons / day	\$0.71	\$0.64
Lime (\$188.23/ton)	13 tons / day	\$0.24	\$0.21
Ammonia 19% (\$352.93/ton)	10.5 tons / day (19%)	\$2.48	\$2.25
SCR Catalyst (\$176.46 / ft3)	0.4 ft3 / day	\$0.04	<u>\$0.03</u>
Waste Management	4 Streams	<u>\$0.06</u>	<u>\$0.06</u>
Variable Costs		<u>\$65.49</u>	<u>\$59.29</u>
Total All Costs		\$85.24	\$77.17
DOE NETL Report	Consulting LLC All Rights Reserved	\$62.17 /itor	n-clinker

Wastes Generated

- SCR Catalyst waste
- Triethylene glycol waste
- Thermal reclaimer waste
- Pre-scrubber blowdown waste

0.7 ft3 / day 287 gallons / day 1.69 tons / day 0.03 tons /day

Cost Escalation & CemCap Study

				Chemical Engineering Plant Cost Index
			900.0	797.
Opex	Costs	Units	800.0	
Raw Meal Price	€ 5.00	€/t-clk		+38.5%
Coal Price	€ 3.00	€/GJ-LHV	700.0	
Natural Gas Price	€ 6.00	€/GJ-LHV	700.0	
Power	€ 58.10	€/MWh		576 1
Cost of Steam produced from a natural gas boiler	€ 25.30	€/MWh	600.0	370.1
Cost of steam produced from waste heat	€ 8.50	€/MWh		
Carbon Tax	€ -	€/t-CO ₂	500.0	
Cooling water	€ 0.39	€/m ³		Today
Process water	€ 6.65	€/m ³	400.0	
Ammonia solution for SNCR	€ 130.00	€/t-NH ₃		
MEA solvent	€ 1,450.00	€/t-MEA	300.0	
Ammonia solvent	€ 406.00	€/t-NH ₃		CEMCAP
Sulfuric acid	€ 46.00	€/t-H ₂ SO ₄	200.0	
Sodium hydroxide for flue gas desulfurization	€ 370.00	€/t-NaOH		
Membrane material replacement	€ 7.87	€/m ²	100.0	
Other variable O&M	€ 1.09	€/t-clk	100.0	
Cost of labor per person	€ 60,000.00	€/year		
			0.0	
Adapted from CEMCAP Study			2000	2005 2010 2015 2020

Cost Comparison: 2018 vs 2022 US Dollars

- Increases in cost of money, escalation resulted in cost of capture increases ~50% (+)
- Increases in utility pricing (i.e. natural gas, auxiliary power) had minimal impact

DOE NETL Report

Compression Levels

Multi-period, multi-objective optimisation of the Northern Lights and Stella Maris carbon capture and storage chains, Fraga et. al. 2024

© 2024 Kline Consulting LLC, All Rights Reserved

6 to 8 stages of compression with inter-stage cooling

Multistage Compression with Cooling

Siemens

	Specifications for CO2 used for EOR and / or Sequestration													
				Proj	ects				Pip	elines			Ship Tr	ansport
							Kinder		Weyburn			Holcim	Kinder	Brevik
Notes:				CarbonNet	CarbonNet	Dunkerque	Morgan	Dynamis	field	Canyon	Cortez	Florence	Morgan	Project
		Units	Teeside <mark>n</mark>	Lower <mark>n</mark>	Upper <mark>n</mark>	n5	n1	n	supply <mark>n</mark>	Reef n2	(KM) <mark>n2</mark>	n3	n	n4
$a = as so_2$	Carbon dioxide	Vol%	>=95	>93.5%	100%	>95	>=95	>95.5	<96	>95	>95	>95	>99.7%	
b – excluding	Acetaldehyde	ppmv				<20								<=20
methane	Amine	ppmv				<10								<=10
c – g/m3	Ammonia	ppmv	<50			<10								<=10
	Argon	Vol %	<=1			<0.4		<4					<0.3	ļ
d – ppmw	Cadmium & Thallium	ppmv				<0.03								<=0.03
e - liters / m3	Carbon Monoxide	ppmv	<2000	<=900	<=5000	<750		<=2000 h	<1000			<4250	2000	<=100
	Formaldehyde	ppmv				<20								<=20
f – lbs / mn cfm	Glycol	14.1.04					0.3 g			<4E-05 e		0.3 g		
a – aallons / mn cf	Glycol liquid	Vol %					0			20.0				
b = nnm (w, or y, not)	Hydrocarbon Dew Point	Deg C	. 2	(0.5 h		(1200	-28.9		-2 2 L	-28.9	105			
$n = ppm (w \ or \ v \ not$	Hydrocarbons		<=2	<=0.5 D		<1200 m	<5	-1	<2.3 K	<5	1~5	<5	-0.2	<-F0
specified)	Hydrogon Sulfido		<=1	<-100	<-100	<0.75	<20	<4	<0000	<1500 d	-2	<1	<0.5	<=50
i – volume %	Mercury	Ippinv	< <u>-200</u>	<-100	<-100	<0.03	< <u>2</u> 0	<200 II	<9000	<1500 u	~2	< <u>2</u> 0	20011	<-0.03
k C2	Methane Acquifer	Vol %				<u>\0.05</u>		<4						<u> </u>
R - C2+	Methane FOR	Vol %	<=1			<1		<2i	<0.7				<0.3	
I – ppmv	Nitrogen	Vol %	<=1			<2	<4	<4	< 0.03	<4	<4	<4	< 0.3	
m – aliphatic only	Nitrogen Oxides	ppmv	<100	<=250	<=2500	<10		<= 100				<1		<=10
	Oxygen Acquifer	ppmv	<10			<40	<10 d	100~1000				<10		<=10
	Oxygen EOR	ppmv							<50	<10 d		<10		
Note: France has	Particle Size	Um	<10											
additional	Particulates	mg/Nm3	<=1									<1 d		
	Sulfur Oxides	ppmv	<100	<=200 a	<=200 a	<10		<= 100				<1		<=10
requirements	Sulfur Total	ppmw				<201	<35		<=35	<=1450		<35		
	Temperature	Deg C					<=48.9			<=48.9		<48.9		
	Total Non-Condensable	Vol %	<=4	<=2	<=5	<4		<=4					ļ'	ļ
	Water Free	ppmv	<=50	<=100	<=100	<40	0	<=500 h	20		30 f	30 f	50 h	<=30
	Water Vapour Phase						<0.48 c	<=200 h		<0.48 c				

Pipeline / Project Specification Sources

n	Pipelines - The safest way to travel for CO2 - Whole value chain carbon capture, utilization and storage
	Ken Havens, VP of Operations and Engineering, Kinder Morgan CO2, Company - 16-Oct-18
n1	https://www.ccusnetwork.eu/sites/default/files/TG3_Briefing-CO2-Specifications-for-Transport.pdf
	CCUS Projects Network - Briefing on carbon Dioxide Specifications for Transport
	1st report of the tematic Working group on:CO2 transport, storage, and networks - Dr. Peter A Brownsort 29-Nov-19
	https://pure.strath.ac.uk/ws/portalfiles/portal/133841084/Race_etal_JPE_2012_Towards_a_CO2_pipeline_specification_defining_tolera
n2	nce_limits.pdf
	This is a peer-reviewed, accepted author manuscript of the following article: Race, J. M., Wetenhall, B., Seevam, P. N., & Downie, M. J.
	(2012). Towards a CO2 pipeline specification: defining tolerance limits for impurities. The Journal of Pipeline Engineering, 11(3), 173-190.
n3	LH CO2MENT Colorado Project, Final Report, Version 2, January 31, 2023 - Electricore, Ms. Deborah Jelen
	Emailed specifications from Brevik project, Adsorption assisted cryogenic carbon capture: an alternate path to steam driven technologies
n4	to cresae cost and carbon footprint
n5	GRTgaz Open Season Pour une Infrastructure de transport de CO2 a Dunkerque
	https://www.grtgaz.com/sites/default/files/2023-02/Proposition-specifications-co2-dunkergue.pdf

11/30/2024

Gas Constituents Impacts on Pipelines

	Hydraulics (dense	Hydraulics (gas						
	phase)	phase)	Fracture Control	Water Solubility	Corrosion	Cracking	Hydrate Formation	Health & Safety
								Toxic in event of
CO2								release
							Promotes Hydrate	
H2O	Not Studied	Not Studied	Not Studied		Promotes corrosion	Promotes Cracking	Formation	
	Increase critical	Reduces operating	Reduces saturation	Decreases water				Toxic in event of
SOx	pressure	pressure	pressure	solubility	Promotes corrosion	Effect unknown	Effect unknown	release
	Increase critical	Reduces operating		Decreases water				Toxic in event of
NOx	pressure	pressure	Effect unknown	solubility	Promotes corrosion	Effect unknown	Effect unknown	release
	Increase critical	Reduces operating		Increases water				Toxic in event of
H2S	pressure	pressure	Effect unknown	solubility	Effect unknown	Promotes cracking	Effect unknown	release
		Increases operating	Increases Saturation					Toxic in event of
СО		pressure	Pressure	Effect unknown	Not Studied	Promotes Cracking	Effect unknown	release
		Increases operating	Increases Saturation				Promotes Hydrate	
H2	Increase critical	pressure	Pressure	Effect unknown	Not Studied	Effect unknown	Formation	Effect unknown
	pressure, reduces	Increases operating	Increases Saturation					
Ar	pipeline capacity,	pressure	Pressure	Effect unknown	Not Studied	Not studied	Effect unknown	Effect unknown
	increases pressure	Increases operating	Increases Saturation				Promotes Hydrate	
N2	drop, increases	pressure	Pressure	Effect unknown	Not Studied	Not studied	Formation	Effect unknown
	power consumption	Increases operating	Increases Saturation					
02		pressure	Pressure	Effect unknown	Promotes corrosion	Not studied	Effect unknown	Effect unknown
		Increases operating	Increases Saturation	Decreases water				
CH4		pressure	Pressure	solubility	Not Studied	Not studied	Effect unknown	Effect unknown

Adapted from Race, et al. [3]

Geseke Flue Gas Cleaning

Geseke Oxy-Fuel CCS Power Consumption

Post Cleaning (w/o Oxygen Removal)

	Compression & Dehydration Only (No O2 Removal) 2017\$												
Facility Size (tonne / year)	246,000		383,000		400,000		450,000		1,000,000		3,000,000		6,000,000
Mn SCFD	13		20		21		23		52		156		312
US ton/day	743		1,154		1,206		1,358		3,017		9,052		18,104
Purchased equipment Cost (\$mn)	\$ 4.90	\$	7.30	\$	7.50	\$	8.00	\$	17.10	\$	26.40	\$	39.80
Total Installed Cost (\$mn)	\$ 15.30	\$	22.50	\$	23.10	\$	24.80	\$	53.00	\$	81.70	\$	123.50
Factor	3.122		3.082		3.080		3.100		3.099		3.095		3.103
Annualized Capital Costs (\$mn / year)	\$ 1.90	\$	2.80	\$	2.90	\$	3.10	\$	6.60	\$	10.10	\$	15.30
kWh/tonne CO2	112		112		112		112		112)	76		76
Annual Operating Costs	\$ 4.30	\$	6.60	\$	6.80	\$	7.50	\$	16.40	\$	30.10	\$	55.20
Total Annualized Costs (\$/tonne-CO2)	\$ 17.52	\$	17.11	\$	17.05	\$	16.69	\$	16.40	\$	10.02	\$	9.20

Trimeric Report

Cost influenced by pipeline & project / sequestration site specifications & local power costs

Post-Cleaning with Oxygen Removal

	EOR grade - Compression, Refrigeration, & Distillation (O2 Removal) 2017\$												
Facility Size (tonne / year)	246,000		383,000		400,000		450,000		1,000,000		3,000,000		6,000,000
Mn SCFD	13		20		21		23		52		156		312
US ton/day	743		1,154		1,206		1,358		3,017		9,052		18,104
Purchased equipment Cost (\$mn)	\$ 10.70	\$	13.60	\$	14.00	\$	15.00	\$	32.10	\$	38.00	\$	58.00
Total Installed Cost (\$mn)	\$ 17.20	\$	23.70	\$	24.40	\$	26.10	\$	55.80	\$	86.00	\$	130.00
Factor	1.607		1.743		1.743		1.740		1.738		2.263		2.241
Annualized Capital Costs (\$mn / year)	\$ 2.10	\$	2.90	\$	3.00	\$	3.20	\$	6.90	\$	10.70	\$	16.10
kWh/tonne CO2	154		154		154		154		154)	133		133
Annual Operating Costs	\$ 3.30	\$	5.20	\$	5.40	\$	6.10	\$	13.50	\$	34.90	\$	69.80
Total Annualized Costs (\$/tonne-CO2)	\$ 22.00	\$	21.00	\$	21.00	\$	20.60	\$	20.40	\$	15.20	\$	14.30

Trimeric Report

Cost influenced by pipeline & project / sequestration site specifications & local power costs

CCUS Projects in the United States

CCS Facilities Currently Operating in the United States

Name of Facility	Date CCS Operations Began	Location	Type of Production	CO ₂ Used for Enhanced Oil Recovery?	CO ₂ Capture Capacity (Millions of metric tons per year)
Terrell	1972	Texas	Natural Gas Processing	Yes	0.5
Enid Fertiziler	1982	Oklahoma	Ammonia (Fertilizer)	Yes	0.2
Shute Creek	1986	Wyoming	Natural Gas Processing	Yes	7.0
Great Plains	2000	North Dakota	Hydrogen and Ammonia (Fertilizer)*	Yes	3.0
Core Energy	2003	Michigan	Natural Gas Processing	Yes	0.4
Arkaion	2009	Kansas	Ethanol	Yes	0.5
Century Plant	2010	Texas	Natural Gas Processing	Yes	5.0
Bonanza BioEnergy	2012	Kansas	Ethanol	Yes	0.1
Air Products	2013	Texas	Hydrogen	Yes	0,9
Coffeyville	2013	Kansas	Hydrogen and Ammonia (Fertilizer) ^a	Yes	0.9
Lost Cabin	2013	Wyoming	Natural Gas Processing	Yes	0.9
PCS Nitrogen	2013	Louisiana	Ammonia (Fertilizer)	Yes	0.3
Petra Nova	2017 ^b	Texas	Electric Power	Yes	1.4
Illinois Industrial	2017	Illinois	Ethanol	No	1.0
Red Trail Energy	2022	North Dakota	Ethanol	No	0.2

Data source: Congressional Budget Office, using data from the Global CCS Institute. See www.cbo.gov/publication/59345#data.

CCS = carbon capture and storage; CO2 = carbon dioxide.

a. Gasification of coal- or petroleum-based coke results in a mixture of hydrogen and other elements, which can be used to produce ammonia.

b. The Petra Nova CCS facility shut down in 2020 and reopened in 2023.

Congressional Budget Office Report

VDZ Study on CO2 Infrastructure

- The study analysed the German requirements by the cement, lime and waste incineration industry
- About 4800 km of pipelines are needed by 2035
- Transporting a growing demand of CO2
 - from 6.5 Mta in 2030
 - to 45.5 Mta by 2045
 - for a total of 500 Mt
 - Eventually, up to 21 Mta will be from AT, CH and FR (transit)
- Installation costs for the grid are estimated at € 14 bn

 Leading to 35 €/t CO2 for the period under review, excluding transit quantities

https://www.vdz-online.de/fileadmin/wissensportal/publikationen/zementindustrie/VDZ-Studie_CO2-Infrastruktur-Deutschland.pdf

Cost of Some Pipeline Projects

Pipeline Name	Green Pipeline	Greencore Pipeline	Seminole Pipeline	Coffeyville Pipline	Webster Pipeline	Emma Pipeline
	Denbury Gulf Coast					
	Pipelines, LLC (LA) &					
	Denbury Green Pipeline -	Greencore Pipeline			Denbury Green Pipeline -	
Company	texas, LLC (TX)	Company, LLC	Tabula Rasa Energy, LLC	Perdure Petroleum, LLC	Texas, LLC	Tabula Rasa Energy, LLC
State	LA/TX	WY/MT	ТХ	KS/OK	ТХ	ТХ
Pipeline Constructed						
(year)	2009/2010	2011/2012	2012	2013	2013	2015
Pipeline Length (miles)	320	232	12.5	67.85	9.1	2
Pipeline Diameter						
(inches)	24	20	6	8	16	6
Maximum Operating						
Pressure (psig)	2,220	2,220	1,825	1,671	2,220	2,319
Total Pipeline Cost						
(\$/mile)	\$3,044,000	\$1,372,700	\$480,000	\$928,500	\$3,190,000	\$750,000
Pipeline Cost (\$/diameter						
inch mile)	\$126,823	\$68,635	\$80,000	\$116,062	\$199,176	\$125,000
					Entire right of way within	
					suburban high	
					consequence area: more	
					than 60% of pipeline was	
		Right of way on 65%		Construction issues with	installed using horizontal	
	Extensive wetlands and	private ranchland with		rock on lower section of	directional drilling, which	
	marshlands crossed along	35% public and state		pipeline, major boring	added significant cost to	
Notes	with Gavelston Bay	lands		requirements	constitution	

Meeting the Dual Challenge Report

Holcim Florence CO Pipeline estimate

- 4,750 mtpd CO2
- 12 inch pipeline (30 cm diameter)
- 0.375 inch / 9.5 mm wall thickness
- ANSI/ASME Class 900
- X-65 grade steel
 54.1 miles / 87.1 km
 \$112 mn (\$2022)
 \$2.07 mn / mile > \$1.29 mn / km

HOLCIM Florence FEED Study

Transportation Costs - US

CO₂ transport and storage costs in current 2019\$ tCO₂ for various combinations of scale, transport distance, and monitoring assumptions in the United States.

CO ₂ Scale and Distance	Low	Mean	High	High (with extra monitoring)
1 Mtpa, 0 miles	\$9.7	\$16.5	\$23.2	\$34.9
1 Mtpa, 100 miles	\$12.6	\$23.3	\$34.0	\$45.7
1 Mtpa, 500 miles	\$24.1	\$50.6	\$77.2	\$88.9
3.2 Mtpa, 0 miles	\$5.3	\$8.0	\$10.7	\$17.9
3.2 Mtpa, 100 miles	\$6.5	\$11.2	\$15.9	\$23.1
3.2 Mtpa, 500 miles	\$11.6	\$24.1	\$36.6	\$43.8
6 Mtpa, 0 miles	\$4.4	\$6.7	\$9.1	\$15.0
6 Mtpa, 100 miles	\$5.2	\$9.0	\$12.7	\$18.6
6 Mtpa, 500 miles	\$8.7	\$17.9	\$27.1	\$33.0
15 Mtpa, 0 miles	\$4.0	\$6.2	\$8.4	\$13.7
15 Mtpa, 100 miles	\$4.5	\$7.4	\$10.4	\$15.6
15 Mtpa, 500 miles	\$6.3	\$12.2	\$18.2	\$23.4

CO2 Transport & Storage Report

Sequestration Costs – US

U.S. storage cost range (2019\$/tCO2) under	base monitoring assumptions.
---	------------------------------

Rate Mtpa CO2	Low	Mean	High
1	\$9.74	\$16.47	\$23.20
3.2	\$5.25	\$8.00	\$10.75
6	\$4.36	\$6.73	\$9.09
15	\$4.05	\$6.24	\$8.44

U.S storage cost rang	(2019\$/	CO2) under extra	monitoring assumptions.
-----------------------	----------	------------------	-------------------------

Rate Mtpa	Mean	Mean with Extra Monitoring	Extra Monitoring-Only Costs
1	\$16.47	\$28.14	\$11.67
3.2	\$8.00	\$15.14	\$7.14
6	\$6.73	\$12.67	\$5.95
15	\$6.24	\$11.49	\$5.25

CO2 Transport & Storage Report

© 2024 Kline Consulting LLC, All Rights Reserved

Notes:

1~3.2 Mtpa CO2 would represent small to large individual plants or a combination of individual plants with other nearby sources

3.2~6 Mtpa CO2 would most likely represent shared pipelines or small hubs

6~15 Mtpa CO2 would most likely represent large hubs or sequestration end points

"By default, USDOE (2017) assumes stringent monitoring requirements that we determined to reflect the high end of the CO2 storage cost range and which we refer to as "extra" monitoring assumptions."

Satartia Mississippi

The price of CO2 Pipelines just went up – in the US at least !!

45 hospitalized in a town of 50 people, No deaths

\$3.95 Million TotalCosts\$2.9 Million Penalty

Denbury Failure Report

© 2024 Kline Consulting LLC, All Rights Reserved

24 inch pipeline Designed for 150 bar and operated at 96.5 bar at the time.

5 million liters of liquid CO2 released (Investigative report feels this number may be low)

2.76 million m^3 at 21 °C

33

Carbon Capture Cost Check List

Permitting
Plant modifications
Gas precleaning
Carbon capture
CO2 dehydration
CO2 dehydration
Compression
CO2 purification
Transportation
Sequestration
Training
Stakeholder Management

Keep in mind that construction costs vary in different parts of the world

Carbon Capture Cost Summary

Cement Plant Reconfigured

References

- DOE Report "Analysis of Carbon Capture Retrofits for Cement Plants", Hughes, Sydney; Cvetic, Patricia 2023 (DOE/NETL-2023/3856)
- ECRA Technology Papers "The ECRA Technology Papers 2022 State of the Art Cement Manufacturing" The European Cement Research Academy, 2022
- Trimeric Report "Screening-Level Cost Estimates for CO2 Capture and Transportation: CarbonSafe Illinois Macon County", Mckaskie, Ray 2021, report Number: DOE-FE00293881-11
- CEMCAP Study "CEMCAP comparative techno-economic analysis of CO2 capture in cement plants", including appendices, CEMCAP, 2018
- Holcim Florence FEED Study "LH CO2MENT COLORADO PROJECT FINAL REPORT Version 2". Jelen D. 2023, DOE: DEFE0031942
- CO2 Transport & Storage Report "The cost of CO2 transport and storage in global integrated assessment modeling" Smith E. E. et al. 2021
- Denbury Failure Report "Failure Investigation Report Denbury Gulf Coast Pipelines, LLC Pipeline Rupture/ Natural Force Damage", Matthews, W. 2022
- Congressional Budget Office Report "Carbon Capture and Storage in the United States" Congressional Budget Office, 2023
- Meeting the Dual Challenge Report "Meeting the Dual Challenge A Roadmap to At-Scale Deployment of Carbon Capture, Use, and Storage",
 "Chapter Six CO2 Transport", National Petroleum Council, 2020
- Siemens "Compressors for CO2 capture in the cement and lime industry How compressor selection drives project economics and plant concept", Biyikli 2024 (Presentation at the 2024 Global Cement CCUS Conference, Oslo, Norway, May 2024)
- Heidelberg Presentation "Decarbonizing Geseke Cement Plant with an Oxyfuel-Based Process", Dr. Stevia Sutanto, GHGT-17, Calgary, Alberta, Canada, October 2024

Questions?

John Kline Kline Consulting, LLC

johnpkline1@gmail.com

(484) 602-3474